Adaptive neural networks can improve the accuracy of pattern recognition and prediction by adapting to the most optimal model structure and changing inputs while training.
An ANN (Artificial Neural Networks) is a system that mimics biological neurons. It processes data and exhibits intelligence by making predictions, recognizing patterns, and learning from historical data. By creating interconnected neurons, ANNs provide various benefits like organic learning, non-linear data processing, fault tolerance, and self-repair. But still, ANNs face some challenges while training. For instance, ANNs require massive volumes of data to train them. This tremendous volume of data is needed so that ANNs can be trained in all the aspects of a particular task. For instance, to train an ANN for image classification, it must be trained with labeled images of every object or living organism that it has to classify.
Training ANNs is a time-consuming process. Also, ANN models that can process large datasets become too complex to manage, maintain, and modify. Due to such challenges, many researchers were motivated to make ANNs adaptive to changes while training. Adaptive neural networks can generalize themselves according to a given problem using various adaptive strategies.
Techniques used by adaptive neural networks to adapt
Researchers use three different techniques for providing adaptability to adaptive neural networks. The evolutionary technique is used to adapt according to the problem environment or the evolving input data. The non-evolutionary technique is used to adapt to the learning curve with the help of learning from various neural networks. And the hybrid technique is a combination of the use of both evolutionary and non-evolutionary techniques. Using these techniques, ANNs can generalize themselves to problems and change their model, learning rate, and adapt to input data as required.
Structural adaptation
Adaptive neural networks can auto-change their models to find optimal network architecture. Finding optimal architecture is finding how many layers will be necessary for the neural networks to operate accurately. Structural adaptation is done with the help of three model selection techniques. The first technique performs a search through all the previously available architectures and finds the best-suited model. The second technique starts with a big and complex model and then simplifies it until optimal architecture is found. The third technique begins with a small model and then evolves itself as the learning increases. SEPA (Structure Evolution and Parameter Adaptation) algorithm, cascading algorithm, and constructive algorithm are some of the algorithms that are used to provide structural adaptability to artificial neural networks.
Functional adaptation
Functional adaptation is adapting the slope of activation functions of neural networks to reduce errors in outputs. Activation functions are mathematical functions that determine whether a neuron in the neural network should be fired or not. Activation functions do this by determining whether the input of the neuron will be useful to make predictions. They add non-linearity to the output of neural networks, making them capable of learning and performing complex tasks. Without activation functions, neural networks will be like linear regression models.
Parameter adaptation
Parameter adaptation is adapting to changing input data functions, i.e., weights and biases while training. Every input in neural networks is associated with weights. Weights show what impact an input will have on the output. Greater the weight more is the impact of an input. And bias is a constant used to adjust the output along with the sum of weights so that the model can best fit the given data. If a neural network is adaptable to parameters, then the weights of the network can be changed while training according to a given problem. And, with the help of parameter adaptation, neural networks can get knowledge from new weight inputs without losing knowledge gained from previous inputs with minimum loss in accuracy. Algorithms like swarm optimization, genetic algorithm, and back-propagation algorithm can be used to provide parameter adaptability to adaptive neural networks.
This article has been published from the source link without modifications to the text. Only the headline has been changed.
Source link