HomeMachine LearningMachine Learning MediaPodcast on Unadversarial Examples

Podcast on Unadversarial Examples

Audio version of the article

Performing reliably on unseen or shifting data distributions is a difficult challenge for modern vision systems, even slight corruptions or transformations of images are enough to slash the accuracy of state-of-the-art classifiers. When an adversary is allowed to modify an input image directly, models can be manipulated into predicting anything even when there is no perceptible change, this is known an adversarial example. The ideal definition of an adversarial example is when humans consistently say two pictures are the same but a machine disagrees. Hadi Salman, a Ph.D student at MIT (ex-Uber and Microsoft Research) started thinking about how adversarial robustness  could be leveraged beyond security.

He realised that the phenomenon of adversarial examples could actually be turned upside down to lead to more robust models instead of breaking them. Hadi actually utilized the brittleness of neural networks to design unadversarial examples or robust objects which_ are objects designed specifically to be robustly recognized by neural networks.

This article has been published from the source link without modifications to the text. Only the headline has been changed.

Source link

- Advertisment -Podcast on Unadversarial Examples 3Podcast on Unadversarial Examples 4

Most Popular

- Advertisment -Podcast on Unadversarial Examples 5Podcast on Unadversarial Examples 6