How specifying world state data model with protocol buffers can help in developing smart contracts
Chaincode is a domain-specific program that relates to specific business process. It programmatically accesses two distinct pieces of the ledger — a blockchain, which immutably records the history of all transactions and a world state that holds a cache of the current value of these states. The job of a smart contract developer is to take an existing business process that might govern financial prices or delivery conditions and express it as a smart contract in a programming language. Protobuf
(short for Protocol buffers) are the language-neutral, platform-neutral, extensible mechanism for serializing structured data. Using protocol buffers can help to define data model once and then easily write and read structured data to and from a variety of data sources.
Discover and review best Blockchain softwares
Chaincode state
The ledger’s current state data represents the latest values for all keys ever included in the chain transaction log. Since current state represents all latest key values known to the channel, it is sometimes referred to as World State.
Chaincode invocations execute transactions against the current state data. To make these chaincode interactions extremely efficient, the latest values of all keys are stored in a state database.
Smart contracts primarily put
, get
and delete
states in the world state, and can also query the state change history. Chaincode “shim” APIs implements ChaincodeStubInterface which contain methods for access and modify the ledger, and to make invocations between chaincodes. Main methods are:
* GetState(key string) ([]byte, error)
performs a query to retrieve information about the current state of a object
* PutState(key string, value []byte) error
creates a new object or modifies an existing one in the ledger world state
* DelState(key string) error
removes an object from the current state of the ledger, but not its history
* GetStateByPartialCompositeKey(objectType string, keys []string) (StateQueryIteratorInterface, error)
queries the state in the ledger based on given partial composite key
* GetHistoryForKey(key string) (HistoryQueryIteratorInterface, error)
returns a history of key values across time.
All this methods use string key as record identifier and slice of bytes as state value. Most of examples use serialized to bytes JSON documents as chaincode state value. Hyperledger Fabric supports both LevelDB as CouchDB to serve as state database, holding the latest state of each object. LevelDB is the default key-value state database embedded in every peer. CouchDB is an optional alternative external state database with more features — it supports rich queries against JSON documents in chaincode state, whereas LevelDB only supports queries against keys.
Querying and updating state with ChaincodeStubInterface methods
As shown in many examples, assets can be represented as complex structures — Golang structs , which are required to be marshalled to JSON string
before putting into chaincode state and unmarshalled after receiving from state.
With ChaincodeStubInterface
methods these operations can looks like
this:
ct := ContractType{} err := json.Unmarshal([]byte(args[0]), &req) if err != nil { return shim.Error(err.Error()) } key, err := stub.CreateCompositeKey(prefixContractType, []string{req.UUID}) if err != nil { return shim.Error(err.Error()) } valAsBytes, err := stub.GetState(key) if err != nil { return shim.Error(err.Error()) } if len(valAsBytes) == 0 { return shim.Error("Contract Type could not be found") } err = json.Unmarshal(valAsBytes, &ct) if err != nil { return shim.Error(err.Error()) } ct.Active = req.Active valAsBytes, err = json.Marshal(ct) if err != nil { return shim.Error(err.Error()) } err = stub.PutState(key, valAsBytes) if err != nil { return shim.Error(err.Error()) } return shim.Success(nil)
In the example above smart contract code explicitly performs many auxiliary actions:
- Creating composite key
- Unmarshalling data after receiving it from state
- Marshalling data before placing it to state
Chaincode state operations with CCKit
State methods wrapper
CCKit, library for creating and testing Hyperledger Fabric golang chaincode, contains wrapper on ChaincodeStubInteface
methods to working with chaincode state. This methods simplifies chaincode key creation and data transformation during work with chaincode state.
type State interface { // Get returns value from state, converted to target type // entry can be Key (string or []string) or type implementing Keyer interface Get(entry interface{}, target ...interface{}) (result interface{}, err error) // Get returns value from state, converted to int // entry can be Key (string or []string) or type implementing Keyer interface GetInt(entry interface{}, defaultValue int) (result int, err error) // GetHistory returns slice of history records for entry, with values converted to target type // entry can be Key (string or []string) or type implementing Keyer interface GetHistory(entry interface{}, target interface{}) (result HistoryEntryList, err error) // Exists returns entry existence in state // entry can be Key (string or []string) or type implementing Keyer interface Exists(entry interface{}) (exists bool, err error) // Put returns result of putting entry to state // entry can be Key (string or []string) or type implementing Keyer interface // if entry is implements Keyer interface and it's struct or type implementing // ToByter interface value can be omitted Put(entry interface{}, value ...interface{}) (err error) // Insert returns result of inserting entry to state // If same key exists in state error wil be returned // entry can be Key (string or []string) or type implementing Keyer interface // if entry is implements Keyer interface and it's struct or type implementing // ToByter interface value can be omitted Insert(entry interface{}, value ...interface{}) (err error) // List returns slice of target type // namespace can be part of key (string or []string) or entity with defined mapping List(namespace interface{}, target ...interface{}) (result []interface{}, err error) // Delete returns result of deleting entry from state // entry can be Key (string or []string) or type implementing Keyer interface Delete(entry interface{}) (err error) ... }
Converting from/to bytes while operating with chaincode state
State wrapper allows to automatically marshal golang type to/from slice of bytes. This type can be:
- Any type implementing ToByter and FromByter interface
type ( // FromByter interface supports FromBytes func for converting from slice of bytes to target type FromByter interface { FromBytes([]byte) (interface{}, error) } // ToByter interface supports ToBytes func for converting to slice of bytes from source type ToByter interface { ToBytes() ([]byte, error) } )
- Golang struct or one of supported types (
int
,string
,[]string
) - Protocol buffers message
Golang structs automatically marshals/ unmarshals using json.Marshal and
and json.Umarshal methods. proto.Marshal and proto.Unmarshal are used to convert protobuf.
Creating state keys
In the chaincode data model we often need to store many instances of one type on the ledger, such as multiple commercial papers, letters of credit, and so on. In this case, the unique key of those instances will be typically constructed from a combination of attributes, for example:
`CommercialPaper`
+ {Issuer}
+ {PaperId}
yielding series of chaincode state entries keys
[ `CommercialPaperIssuer1Id1`
, `CommercialPaperIssuer2Id2`
, …]
The logic of creation primary key of an instance can be customized in the code, constructing a composite key of an instance based on a combination of several attributes. Composite keys can then be used as a normal string key to
record and retrieve values using the PutState()
and GetState()
functions.
The following snippet shows a list of functions that create and work with composite keys in ChaincodeStubInterface
:
interface ChaincodeStubInterface { // The function creates a key by combining the attributes into a single string. // The arguments must be valid utf8 strings and must not contain U+0000 (nil byte) and U+10FFFF charactres. func CreateCompositeKey(objectType string, attributes []string) (string, error) // The function splits the compositeKey into attributes from which the key was formed. // This function is useful for extracting attributes from keys returned by range queries. func SplitCompositeKey(compositeKey string) (string, []string, error) }
When putting or getting data to/from chaincode state you must provide key. CCKit have 3 options for dealing with entries key:
- Key can be passed explicit to
Put
method
c.State().Put ( `my-key`, &myStructInstance)
- Key type can implement
Keyer
interface
type ( // Key type Key []string // Keyer interface for entity containing logic of its key creation Keyer interface { Key() (Key, error) } )
- Key can be of
Key
type — is essentially slice of string, this slice will be automatically converted to string usingshim.CreateCompositeKey
method.
and in chaincode you need to provide only type instance, key will be created automatically:
c.State().Put (&myStructInstance)
- Entry type can have associate mapping
Mapping defines rules for namespace (prefix for key), primary and other uniq and non uniq keys for an entity. Mapping mainly used with protobuf
state schema.
Range queries
As well as retrieving assets with a unique key, ChaincodeStubInterface
offers functions the opportunity to retrieve sets of assets based on a range criteria.
Moreover, composite keys can be constructed to enable queries against multiple components of the key.
The range functions return an iterator StateQueryIteratorInterface
over a set of keys matching the query criteria. The returned keys are in lexical order.
Additionally, when a composite key has multiple attributes, the range query function, GetStateByPartialCompositeKey()
, can be used to search for keys matching a subset of the attributes.
For example, the key of a CommercialPaper
composed of Issuer
and PaperId
attributes, entries can be searched only from one Issuer
.
Protobuf state model example
CCKit protocol buffers example use Commercial paper scenario and
implements same functionality as Node.JS chaincode sample from official documentation. Protobuf is a way of encoding structured data in an efficient and extensible format.
Protobuf schema advantages:
- Schema abstraction layer
Encoding the semantics of your business objects once, in .proto
format, is enough to help ensure that the message doesn’t get lost between applications,
and that the boundaries you create enforce your business rules.
2. Extensions — validators etc
Protobuf v3 does not support validating required parameters, but there are third party projects for proto validation, for example
https://github.com/mwitkow/go-proto-validators. It allows to encode, at the schema level, the shape of your data structure, and the validation rules.
3. Easy Language Interoperability
Because Protocol Buffers are implemented in a variety of languages, they make interoperability between polyglot applications in your architecture that much simpler. If you’re introducing a new service using Java Fabric SDK or Node.Js Fabric SDK you simply have to hand the .proto
file to the code generator written in the target language and you have guarantees about the safety and interoperability between those architectures.
Defining model
With protocol buffers, you write a .proto
description of the data structure you wish to store. From that, the protocol buffer compiler creates a golang struct that implements automatic encoding and parsing of the protocol buffer data with an efficient binary format (or json
). The generated class provides getters and setters for the fields that make up a protocol buffer and takes care of the details of reading and writing the protocol buffer as a unit.
In Commercial Paper example first we define messages, that will be stored in chaincode state or used as events:
CommercialPaper
will be stored in chaincode stateCommercialPaperId
defines unique id part of commercial paper messageIssueCommercialPaper
payload forissue
transaction and event triggered when new commercial paper issuedBuyCommercialPaper
payload forbuy
transaction and event triggered when commercial paper change ownerRedeemCommercialPaper
payload forredeem
transaction and event triggered when commercial paper redeemed
syntax = "proto3"; package schema; import "google/protobuf/timestamp.proto"; message CommercialPaper { enum State { ISSUED = 0; TRADING = 1; REDEEMED = 2; } string issuer = 1; string paper_number = 2; string owner = 3; google.protobuf.Timestamp issue_date = 4; google.protobuf.Timestamp maturity_date = 5; int32 face_value = 6; State state = 7; } // CommercialPaperId identifier part message CommercialPaperId { string issuer = 1; string paper_number = 2; } // IssueCommercialPaper event message IssueCommercialPaper { string issuer = 1; string paper_number = 2; google.protobuf.Timestamp issue_date = 3; google.protobuf.Timestamp maturity_date = 4; int32 face_value = 5; } // BuyCommercialPaper event message BuyCommercialPaper { string issuer = 1; string paper_number = 2; string current_owner = 3; string new_owner = 4; int32 price = 5; google.protobuf.Timestamp purchase_date = 6; } // RedeemCommercialPaper event message RedeemCommercialPaper { string issuer = 1; string paper_number = 2; string redeeming_owner = 3; google.protobuf.Timestamp redeem_date = 4; }
Defining protobuf to chaincode state mapping
Protocol buffers message to chaincode mapper can be used to store schema instances in chaincode state. Every schema type (protobuf or struct) can have mapping rules:
- Primary key creation logic
- Namespace logic
- Secondary key creation logic
var ( // State mappings StateMappings = m.StateMappings{}. //key namespace will be <`CommercialPaper`, Issuer, PaperNumber> Add(&schema.CommercialPaper{}, m.PKeySchema(&schema.CommercialPaperId{})) // EventMappings EventMappings = m.EventMappings{}. // event name will be `IssueCommercialPaper`, payload - same as issue payload Add(&schema.IssueCommercialPaper{}). Add(&schema.BuyCommercialPaper{}). Add(&schema.RedeemCommercialPaper{}) )
Chaincode
In chaincode we simply use generated from .proto
files structures, chaincode state creation predefined in mappings. Chaincode implementation use CCKit routing and middleware features to structure the code.
package cpaper import ( "fmt" "github.com/pkg/errors" "github.com/s7techlab/cckit/examples/cpaper/schema" "github.com/s7techlab/cckit/extensions/debug" "github.com/s7techlab/cckit/extensions/encryption" "github.com/s7techlab/cckit/extensions/owner" "github.com/s7techlab/cckit/router" "github.com/s7techlab/cckit/router/param/defparam" m "github.com/s7techlab/cckit/state/mapping" ) func NewCC() *router.Chaincode { r := router.New(`commercial_paper`) // Mappings for chaincode state r.Use(m.MapStates(StateMappings)) // Mappings for chaincode events r.Use(m.MapEvents(EventMappings)) // store in chaincode state information about chaincode first instantiator r.Init(owner.InvokeSetFromCreator) // method for debug chaincode state debug.AddHandlers(r, `debug`, owner.Only) r. // read methods Query(`list`, cpaperList). // Get method has 2 params - commercial paper primary key components Query(`get`, cpaperGet, defparam.Proto(&schema.CommercialPaperId{})). // txn methods Invoke(`issue`, cpaperIssue, defparam.Proto(&schema.IssueCommercialPaper{})). Invoke(`buy`, cpaperBuy, defparam.Proto(&schema.BuyCommercialPaper{})). Invoke(`redeem`, cpaperRedeem, defparam.Proto(&schema.RedeemCommercialPaper{})). Invoke(`delete`, cpaperDelete, defparam.Proto(&schema.CommercialPaperId{})) return router.NewChaincode(r) } func cpaperList(c router.Context) (interface{}, error) { // commercial paper key is composite key <`CommercialPaper`>, {Issuer}, {PaperNumber} > // where `CommercialPaper` - namespace of this type // list method retrieves entries from chaincode state // using GetStateByPartialCompositeKey method, then unmarshal received from state bytes via proto.Ummarshal method // and creates slice of *schema.CommercialPaper return c.State().List(&schema.CommercialPaper{}) } func cpaperIssue(c router.Context) (interface{}, error) { var ( issue = c.Param().(*schema.IssueCommercialPaper) //default parameter cpaper = &schema.CommercialPaper{ Issuer: issue.Issuer, PaperNumber: issue.PaperNumber, Owner: issue.Issuer, IssueDate: issue.IssueDate, MaturityDate: issue.MaturityDate, FaceValue: issue.FaceValue, State: schema.CommercialPaper_ISSUED, // initial state } err error ) if err = c.Event().Set(issue); err != nil { return nil, err } return cpaper, c.State().Insert(cpaper) } func cpaperBuy(c router.Context) (interface{}, error) { var ( cpaper *schema.CommercialPaper // but tx payload buy = c.Param().(*schema.BuyCommercialPaper) // current commercial paper state cp, err = c.State().Get( &schema.CommercialPaperId{Issuer: buy.Issuer, PaperNumber: buy.PaperNumber}, &schema.CommercialPaper{}) ) if err != nil { return nil, errors.Wrap(err, `not found`) } cpaper = cp.(*schema.CommercialPaper) // Validate current owner if cpaper.Owner != buy.CurrentOwner { return nil, fmt.Errorf(`paper %s %s is not owned by %s`, cpaper.Issuer, cpaper.PaperNumber, buy.CurrentOwner) } // First buy moves state from ISSUED to TRADING if cpaper.State == schema.CommercialPaper_ISSUED { cpaper.State = schema.CommercialPaper_TRADING } // Check paper is not already REDEEMED if cpaper.State == schema.CommercialPaper_TRADING { cpaper.Owner = buy.NewOwner } else { return nil, fmt.Errorf(`paper %s %s is not trading.current state = %s`, cpaper.Issuer, cpaper.PaperNumber, cpaper.State) } if err = c.Event().Set(buy); err != nil { return nil, err } return cpaper, c.State().Put(cpaper) } func cpaperRedeem(c router.Context) (interface{}, error) { // implement me return nil, nil } func cpaperGet(c router.Context) (interface{}, error) { return c.State().Get(c.Param().(*schema.CommercialPaperId)) } func cpaperDelete(c router.Context) (interface{}, error) { return nil, c.State().Delete(c.Param().(*schema.CommercialPaperId)) }
Tests
We can test all chaincode use case scenarios using MockStub:
package mapping_test import ( "testing" "github.com/hyperledger/fabric/protos/peer" "github.com/golang/protobuf/ptypes" "github.com/golang/protobuf/proto" "github.com/s7techlab/cckit/examples/cpaper/schema" "github.com/s7techlab/cckit/examples/cpaper/testdata" "github.com/s7techlab/cckit/state" "github.com/s7techlab/cckit/examples/cpaper" examplecert "github.com/s7techlab/cckit/examples/cert" "github.com/s7techlab/cckit/identity" testcc "github.com/s7techlab/cckit/testing" expectcc "github.com/s7techlab/cckit/testing/expect" . "github.com/onsi/ginkgo" . "github.com/onsi/gomega" ) func TestState(t *testing.T) { RegisterFailHandler(Fail) RunSpecs(t, "State suite") } var ( actors identity.Actors cPaperCC *testcc.MockStub err error ) var _ = Describe(`Mapping`, func() { BeforeSuite(func() { actors, err = identity.ActorsFromPemFile(`SOME_MSP`, map[string]string{ `owner`: `s7techlab.pem`, }, examplecert.Content) Expect(err).To(BeNil()) //Create commercial papers chaincode mock - protobuf based schema cPaperCC = testcc.NewMockStub(`cpapers`, cpaper.NewCC()) cPaperCC.From(actors[`owner`]).Init() }) Describe(`Protobuf based schema`, func() { It("Allow to add data to chaincode state", func(done Done) { events := cPaperCC.EventSubscription() expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[0])) Expect(<-events).To(BeEquivalentTo(&peer.ChaincodeEvent{ EventName: `IssueCommercialPaper`, Payload: testcc.MustProtoMarshal(&testdata.CPapers[0]), })) expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[1])) expectcc.ResponseOk(cPaperCC.Invoke(`issue`, &testdata.CPapers[2])) close(done) }, 0.2) It("Disallow to insert entries with same keys", func() { expectcc.ResponseError(cPaperCC.Invoke(`issue`, &testdata.CPapers[0])) }) It("Allow to get entry list", func() { cpapers := expectcc.PayloadIs(cPaperCC.Query(`list`), &[]schema.CommercialPaper{}).([]schema.CommercialPaper) Expect(len(cpapers)).To(Equal(3)) Expect(cpapers[0].Issuer).To(Equal(testdata.CPapers[0].Issuer)) Expect(cpapers[0].PaperNumber).To(Equal(testdata.CPapers[0].PaperNumber)) }) It("Allow to get entry raw protobuf", func() { cp := testdata.CPapers[0] cpaperProtoFromCC := cPaperCC.Query(`get`, &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber}).Payload stateCpaper := &schema.CommercialPaper{ Issuer: cp.Issuer, PaperNumber: cp.PaperNumber, Owner: cp.Issuer, IssueDate: cp.IssueDate, MaturityDate: cp.MaturityDate, FaceValue: cp.FaceValue, State: schema.CommercialPaper_ISSUED, // initial state } cPaperProto, _ := proto.Marshal(stateCpaper) Expect(cpaperProtoFromCC).To(Equal(cPaperProto)) }) It("Allow update data in chaincode state", func() { cp := testdata.CPapers[0] expectcc.ResponseOk(cPaperCC.Invoke(`buy`, &schema.BuyCommercialPaper{ Issuer: cp.Issuer, PaperNumber: cp.PaperNumber, CurrentOwner: cp.Issuer, NewOwner: `some-new-owner`, Price: cp.FaceValue - 10, PurchaseDate: ptypes.TimestampNow(), })) cpaperFromCC := expectcc.PayloadIs( cPaperCC.Query(`get`, &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber}), &schema.CommercialPaper{}).(*schema.CommercialPaper) // state is updated Expect(cpaperFromCC.State).To(Equal(schema.CommercialPaper_TRADING)) Expect(cpaperFromCC.Owner).To(Equal(`some-new-owner`)) }) It("Allow to delete entry", func() { cp := testdata.CPapers[0] toDelete := &schema.CommercialPaperId{Issuer: cp.Issuer, PaperNumber: cp.PaperNumber} expectcc.ResponseOk(cPaperCC.Invoke(`delete`, toDelete)) cpapers := expectcc.PayloadIs(cPaperCC.Invoke(`list`), &[]schema.CommercialPaper{}).([]schema.CommercialPaper) Expect(len(cpapers)).To(Equal(2)) expectcc.ResponseError(cPaperCC.Invoke(`get`, toDelete), state.ErrKeyNotFound) }) }) })
This article has been published from the source link without modifications to the text. Only the headline has been changed.