Home Machine Learning Machine Learning News How Is Machine Learning Transforming Small Business Lending?

How Is Machine Learning Transforming Small Business Lending?

Small and medium-sized businesses are the keystone of the modern-day labor market. In the United States alone, small businesses employ almost 50% of the private workforce, and recent data shows that companies with fewer than 20 employees have added 1.2 million net new jobs.

But although their growth is vital to a
sustainable global economy, SMBs continue to struggle to get the funding they
need. The traditional lending system simply isn’t set up to meet the smaller
capital needs of these types of enterprises: taking into account the risks and
the long review process, small business loans typically don’t pay off for
banks. Chances of being accepted are incredibly low for businesses that aren’t
already well-established, and they rarely have the structure to carry them
through the long review process anyway.

It has been an incredibly frustrating road
for entrepreneurs, but thanks to developments in AI and data science, the
alternative lending market has opened the doors to new opportunities. Here’s
how digital lenders are utilizing machine learning to reshape the industry and
provide a growing number of small enterprises with the capital they need. 

Detecting Financial Fraud

We’re witnessing how machine learning is improving fraud prevention across all industries and platforms, and it’s no different with the financial sector. When it comes to SMB lending, where fraud detection is a critical concern of the underwriting process, predictive models are being trained to assess risks by analyzing cases of financial fraud. To determine the risks based on application characteristics, the models then analyze data such as:

  • credit
    bureau data
  • verification
    information collected throughout the application process
  • third-party
    information from fraud data providers, etc.

The model then presents the results as a
percentage probability of fraud. This way of assessing risk is not only
significantly more informed, but it also helps speed up the process as
underwriters can immediately know which applications to flag.

A Fairer Chance for All Applicants

In the traditional lending system,
applicants are reviewed for creditworthiness by examining a very narrow range
of data. It’s clear that in today’s marketplace, credit history and Paydex
scores don’t paint a clear picture of a firm’s potential. And when it comes to
newer businesses looking for a loan, their chances are instantly trumped by the
notorious issue of “insufficient credit history”.

In the digital lending market, machine learning models are being used to present exponentially larger sets of data and scenarios that will help paint a much more detailed picture of the applicant’s creditworthiness. Lenders can review real-time enhanced data that reflects the health and potential of a business, such as customer reviews and real-time shipping trends. As a result, loan applicants are reviewed more fairly while lenders are able to create advanced risk profiles. 

Improving the Efficiency of the Underwriting Process

Underwriting automation is helping overcome
the second major obstacle in small business lending: the length of the entire
process.

Most small businesses don’t have the capital to carry them through the review process, which takes months before lenders can determine financial eligibility and set the pricing model. In the meantime, lenders have to collect data from various sources, clean the data sets, and extract the necessary information. In practice, they also have to get back to the applicant several times throughout the process to collect missing information, often ending up with inconsistent data which further prolongs the work. 

All of this is solved by establishing
predictive models to streamline the underwriting process. For example, a model
can be trained to calculate the probability of a loan defaulting within a
certain period. This prediction will be used to assess the applicant’s
financial eligibility and set the pricing. It’s a win-win situation for both
parties, as businesses will gain access to capital much faster, while lenders
can optimize their workflows and significantly improve profitability.

Advancing Loan Monitoring Systems

Machine learning is transforming small
business lending beyond the underwriting process. Once a loan is approved,
lenders have to track an expanding amount of information as part of on-going
loan monitoring. Using machine learning, they’re able to rely on an efficient
loan-monitoring system to track and analyze tremendous amounts of customer
data. With this advanced system in place, they’re able to pinpoint any
potential problems at their earliest stages and take action before the borrower
defaults. Effective loan monitoring is helping make SMB lending less risky and
more profitable.

Without a doubt, machine learning is profoundly transforming SMB lending, at the benefit of both lenders and borrowers. Through predictive models, data analysis, and effective loan monitoring, we’re seeing new solutions to notorious issues of the lending industry. We have yet to see the technology fully implemented in the traditional lending system, but we’re already witnessing a new era of the financial industry.

About the Author

Natasha Lane is a lady of a keyboard with a rich history of working in the IT and digital marketing fields. She is always happy to collaborate with awesome blogs and share her knowledge all around the web. Besides content creating, Natasha is nowadays quite passionate about helping small business to grow strong.

Sign up for the free insideBIGDATA newsletter.

Source link

- Advertisment -

Most Popular

Introductory Guide on XCFramework and Swift Package

In WWDC 2019, Apple announced a brand new feature for Xcode 11; the capability to create a new kind of binary frameworks with a special format...

Understanding Self Service Data Management

https://dts.podtrac.com/redirect.mp3/www.dataengineeringpodcast.com/podlove/file/704/s/webplayer/c/episode/Episode-159-Isima.mp3 Summary The core mission of data engineers is to provide the business with a way to ask and answer questions of their data. This often...

Understanding Machine Learning Data Preparation Techniques

Predictive modeling machine learning projects, such as classification and regression, always involve some form of data preparation. The specific data preparation required for a dataset...

Java and Python in Top List of Self taught Languages

Here's a report for the times: Specops Software sifted data from Ahrefs.com using its Google and YouTube search analytics tool to surface a list of the programming languages people most...

Crypto bulls predict the future for Bitcoin

Bitcoin is back. The cryptocurrency last week passed the $18,000 level for the first time since its all-time peak in December 2017. As...

Tracking Machine Learning experiments with Allegro AI

https://cdn.changelog.com/uploads/practicalai/97/practical-ai-97.mp3 DevOps for deep learning is well… different. You need to track both data and code, and you need to run multiple different versions of...
- Advertisment -