Home Data Engineering Data Media Basics of Presto Distributed SQL Engine

Basics of Presto Distributed SQL Engine

Audio version of the article

Databases are limited in scope to the information that they directly contain. For analytical use cases you often want to combine data across multiple sources and storage locations. This frequently requires cumbersome and time-consuming data integration. To address this problem Martin Traverso and his colleagues at Facebook built the Presto distributed query engine. In this episode he explains how it is designed to allow for querying and combining data where it resides, the use cases that such an architecture unlocks, and the innovative ways that it is being employed at companies across the world. If you need to work with data in your cloud data lake, your on-premise database, or a collection of flat files, then give this episode a listen and then try out Presto today.

Announcements

  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • What are the pieces of advice that you wish you had received early in your career of data engineering? If you hand a book to a new data engineer, what wisdom would you add to it? I’m working with O’Reilly on a project to collect the 97 things that every data engineer should know, and I need your help. Go to dataengineeringpodcast.com/97things to add your voice and share your hard-earned expertise.
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $60 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • You listen to this show to learn and stay up to date with what’s happening in databases, streaming platforms, big data, and everything else you need to know about modern data platforms. For more opportunities to stay up to date, gain new skills, and learn from your peers there are a growing number of virtual events that you can attend from the comfort and safety of your home. Go to dataengineeringpodcast.com/conferences to check out the upcoming events being offered by our partners and get registered today!
  • Your host is Tobias Macey and today I’m interviewing Martin Traverso about PrestoSQL, a distributed SQL engine that queries data in place

Interview

  • Introduction
  • How did you get involved in the area of data management?
  • Can you start by giving an overview of what Presto is and its origin story?
    • What was the motivation for releasing Presto as open source?
  • For someone who is responsible for architecting their organization’s data platform, what are some of the signals that Presto will be a good fit for them?
    • What are the primary ways that Presto is being used?
  • I interviewed your colleague at Starburst, Kamil 2 years ago. How has Presto changed or evolved in that time, both technically and in terms of community and ecosystem growth?
  • What are some of the deployment and scaling considerations that operators of Presto should be aware of?
  • What are the best practices that have been established for working with data through Presto in terms of centralizing in a data lake vs. federating across disparate storage locations?
  • What are the tradeoffs of using Presto on top of a data lake vs a vertically integrated warehouse solution?
  • When designing the layout of a data lake that will be interacted with via Presto, what are some of the data modeling considerations that can improve the odds of success?
  • What are some of the most interesting, unexpected, or innovative ways that you have seen Presto used?
  • What are the most interesting, unexpected, or challenging lessons that you have learned while building, growing, and supporting the Presto project?
  • When is Presto the wrong choice?
  • What is in store for the future of the Presto project and community?

This article has been pubished from the source link without modifications to the text. Only the headline has been changed.

Source link

- Advertisment -

Most Popular

The Company Challenging Businesses to Get Out of the Digital Stone Age

Blockchain technology is getting accepted by companies from various industries -- financial, healthcare, legal, education, and even governments -- that have recognized its future...

Understanding Why Machine Learning can prove beneficial for your Organization

Is machine learning the right choice for your business? In this article by Sagar Trivedi, find out what the possibilities are, and how using...

Robots Invade the Construction Site

https://media.wired.com/clips/5fb6fc13553098d62122bc35/720p/pass/Business-Construction-Robot-1%25202.mp4 Boosted by advances in sensors and artificial intelligence, a new generation of machines is automating a tech-averse industry. THERESA AREVALO WAS in high school when she...

Building a Loading Indicator with SwiftUI

Have you ever used the magic move animation in Keynote? With magic move, you can easily create slick animation between slides. Keynote automatically analyzes...

Comparing Riot and Silvergate Blockchains

Despite a sell-off last week primarily due to traders taking profits, the price of Bitcoin has surged nearly 170% so far this year to reach...

Trusting Cloud with our data

It would be great if there were an easy yes or no answer. But it was never going to be that simple. The truth is,...
- Advertisment -